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SUMMARY

This report presents an approach to identifying high-reliability and low-

mass space powerplant conceptual designs that are based on emerging or

advanced technologies which have little or no reliability data base. The

approach consists of estimating a range of expected unit reliabilities, or

failure rates, for these emerging technology elements to determine the impact

of varying the unit failure rates and of applying redundancy at various system

levels on the overall reliability of powerplant designs. When combined with

powerplant mass estimates, the resulting matrix can be used to characterize

and select attractive powerplant design options as a function of the expected

reliability of the emerging technologies.

The study applied this methodology to a lunar-base powerplant concept

based on emerging SP-100 reactor heat source technology and Stirling cycle

power-generation technology. A range of reactor and power-generation unit

reliability estimates was arbitrarily selected to allow for the uncertainty

inherent in these emerging technologies, but only the boundaries of this range

were used in the analysis. Reliability estimates of reactor and power-

generation subsystem units ranged from low, or pessimistic, values of 0.90 and

0.80, respectively; to high, or optimistic, values of 0.98 and 0.95.

A total of 80 lunar-base powerplant designs were investigated. These

powerplants incorporated redundancy at two different levels, and each power-

plant was required to produce at least 800 kWe to meet an assumed mission

success criterion. Design redundancy options at the highest system level

included four different powerplant configurations:

(I) A nonredundant single system producing 800 kWe

_2) Two nonredundant 400-kWe systems operating in series to deliver

800 kWe

(3) Two fully redundant 800-kWe systems operating in parallel

(4) Three partially redundant 400-kWe systems operating in a two-out-of-

three mode

At the lowest system level (the reactor and power-generation subsystem units),

the powerplants had one of twenty different design redundancy options. Reac-

tor subsystems were either single (nonredundant) or dual (fully redundant)

parallel reactor units. Power-generation subsystems were composed of one to

nine partially redundant (k-out-of-n) parallel power-generation units includ-

ing up to two spare units.

As a result of this study some interesting perspectives on the charac-

teristics and selection criteria of high-reliability and low-mass lunar-base

powerplant design configurations have emerged. For example, as expected, the

wide range of emerging-technology reliability estimates used had a significant



effect on the selection of high-reliability and low-mass design configura-

tions, powerplant designs that provided high reliability with low mass when

optimistic emerging technology reliability estimates were assumed were gener-

ally unacceptable when pessimistic reliability estimates were substituted.

Therefore, to ensure acceptable powerplant reliability, one should select

minimum mass configurations on the basis of pessimistic reliability estimates.

Another interesting result of the study was that for either low or high

unit reliability estimates, the best combination of high powerplant reliabil-

ity and low mass occurred when redundancy was applied at the lowest level of

system hierarchy. Thus, the most attractive powerplant design concepts were

nonredundant single-system powerplants with subsystem-unit redundancy options.

Selection of the best redundancy option for the subsystem units, however,

depended on the definition of an acceptable overall powerplant reliability

criterion.

The issue of defining an acceptable overall powerplant reliability cri-

terion was addressed, and the definition of this criterion significantly

affected the selection of the best subsystem unit redundancy configuration.

Since the calculated overall reliability of any powerplant configuration is

highly dependent on the emerging technology reliability estimates, powerplant

reliability is a relative value. Therefore, an acceptable reliability cri-

terion must be defined on the basis of emerging technology reliability

estimates. The reasonable choice appeared to be an acceptable reliability

criterion that required the overall powerplant reliability to be equal to, or

better than, any emerging technology subsystem unit reliability estimate.

However, that selection required every acceptable powerplant configuration to

have two fully redundant, parallel reactor units. Although dual reactors do

not impose a significant mass penalty, they may require integration and oper-

ational considerations that were not fully explored in this study. Therefore,

selecting an attractive powerplant design on the basis of an arbitrary relia-

bility criterion may involve a tradeoff with design or operational complexity

as well as with mass.

Additional perspectives into selecting the best redundancy options for

the subsystem units were gained by analyzing the effect of varying the overall

powerplant reliability criterion with estimates of emerging technology reli-

abilities. For example, with pessimistic emerging technology reliability

estimates and a corresponding reliability criterion of approximately 0.90 or

better, the lowest mass 800-kWe powerplant configuration consisted of a single

800-kWe system composed of two fully redundant, parallel reactor units coupled

to a total of six parallel, partially redundant 200-kWe power-generation

subsystem units, of which two are spares. This configuration provided a

powerplant reliability of 0.8921 at a mass of 26 660 kg. If higher overall

powerplant reliabilities are desired, and additional mass is acceptable, fewer

power-generation units are needed. For example, a decrease to five 267-kWe

power-generation units, including two spares, provides a powerplant reliabil-

ity of 0.9327 at a mass of 28 320 kg, and a further decrease to four 400-kWe

power-generation units, including two spares, provides the highest single-

system powerplant reliability of 0.9631 at a mass of 32 340 kg.

For optimistic emerging technology reliability estimates and a corre-

sponding reliability criterion of 0.98 or better, the lowest mass powerplant,

again, consisted of a single-system 800-kWe configuration. However, this



configuration had two fully redundant reactor units coupled to nine 167-kWe
power-generation units, including two spares. This configuration provided a
powerplant reliability of 0.9898 at a mass of 25 060 kg. Decreasing the num-
ber of power-generation units again provides higher powerplant reliability at
the expense of mass, up to a maximumof 0.9991 at a massof 32 340 kg for a
four-unit power-generation subsystem, including two spares, with each unit
rated at 400 kWe.

Reducing the acceptable reliability criterion to, say, the reliability of
the lowest emerging technology subsystem unit allows single-unit reactor
subsystems to be selected with a resultant powerplant massdecrease. For
example, with pessimistic emerging-technology reliability estimates and a
corresponding reliability criterion of approximately 0.80 or better, the low-
est mass configuration was a single-system powerplant composedof only one
reactor unit coupled to six parallel, partially redundant 200-kWepower-
generation subsystem units including two spares. This configuration provided
a powerplant reliability of 0.8110 at a mass of 23 360 kg. If higher power-
plant reliabilities are desired, a wide range of single unit reactor subsystem
options are viable up to a reliability criterion of about 0.84.

For optimistic emerging technology reliability estimates and a corre-
sponding reliability criterion of 0.95 or better, the lowest mass conceptual
design was a single-system powerplant composed of one reactor unit coupled to

five 200-kWe partially redundant power-generation units with one spare. This

configuration provided a powerplant reliability of 0.9578 at a mass of

21 390 kg. If higher powerplant reliabilities are desired, a wide range of

single-unit reactor subsystem options are viable up to a reliability criterion

of about 0.98.

The perspectives developed in this study provided valuable insight into

the considerations required to identify and characterize high-reliability and

low-mass lunar-base powerplant designs. In general, this methodology can pro-

vide similar reliability perspectives for any space power mission designs

based on emerging technologies with unknown reliabilities.

INTRODUCTION

As part of NASA's efforts to provide viable options for carrying out a

focused program of human exploration of the solar system, its Office of

Exploration (now absorbed into the NASA Office of Aeronautics and Exploration

Technology) desired to establish a knowledge-based understanding for a selec-

tion rationale. A series of illustrative cases and tradeoffs were studied to

develop conceptual point designs and technical requirements and to understand

the driving technology factors and operational considerations in choosing

options. One pathway of human exploration was encompassed in a hypothetical

lunar evolution case study. A permanent facility, with significant capabil-

ities for operations, research, and self-support, would be established on the

lunar surface. Then, lunar resources, including propellants, would be devel-

oped and exploited to reduce support requirements from Earth. Ultimately,

these permanent facilities would be developed for expanded lunar operations

and scientific activities to support expansion of the human presence into the

solar system.



In its role assigned by the NASAOffice of Exploration as the Special
AssessmentAgent for power and propulsion, the NASALewis Research Center

developed a conceptual design to assess integration and operational issues for

a proposed lunar-base powerplant that could provide about 800 kWe (ref. i).

The powerplant concept was based on the SP-100 reactor heat source and

Stirling cycle dynamic power generation: emerging technologies that are cur-

rently being developed in government-sponsored programs and are projected for

system technology validation by the late 1990's. The powerplant design has

features that are highly compatible with a human-rated lunar base from the

standpoints of nuclear safety and of potential for repair or replacement of

nonnuclear subsystems.

From a reliability design configuration perspective, the reference

powerplant consisted of a single power system composed of two serially con-

nected subsystems: a reactor subsystem and a power-generation subsystem. The

reactor subsystem consisted of a single (nonredundant) reactor unit, and the

partially redundant power-generation subsystem contained eight parallel units,

of which six were required to operate and two were spares (redundant). The

reliability path diagram for this configuration (fig. I) illustrates the non-

redundant reactor subsystem and the partial (k-out-of n) redundancy employed

in the power-generation subsystem.

In order to achieve mission success over an unspecified time period, the

single reactor unit must be operating, and at least six out of eight power-

generation units must be operating concurrently. This design was selected to

provide a reasonable combination of good reliability and low mass on the basis

of previous analyses of reactor space power systems using dynamic power con-

version subsystems (ref. 2). However, the configuration may not provide an

acceptable overall powerplant reliability especially for potentially low, or

pessimistic, estimates of reactor and power-generation subsystem unit

reliabilities.

A key issue involved in assessing the reliability of this design - and,

in general, for any power system using emerging technologies - is the estima-

tion of unit reliabilities, or failure rates, for the emerging technologies.

The lack of a substantial or relevant reliability data base for these tech-

nologies is a serious concern for powerplant designers attempting to meet a

mission reliability requirement. A potential solution to this problem, how-

ever, is available at the early conceptual design stage. By selecting a range

of anticipated reliabilities for the emerging technologies, the designer can,

through the application of combinatorial reliability theory, predict the sen-

sitivity of overall powerplant reliability to variation in powerplant design

configuration. The results can then be used to select redundancy options to

achieve high overall reliability.

This methodology yielded the following results for the reference lunar-

base powerplant. For optimistic, upper-bound reliability estimates of 0.98

for the reactor unit and 0.95 for each power-generation unit, the resulting

overall power system reliability was 0.9743 - about as high as the highest

subsystem-unit reliability estimate. For pessimistic, lower-bound reactor and

power-generation unit reliabilities of 0.90 and 0.80, the resulting overall

power system reliability was 0.7172 - significantly less than the highest

subsystem-unit reliability estimate, and even lower than the lowest subsystem-

unit reliability estimate. This result clearly illustrates the deleterious



effect of potentially low values of emerging-technology unit reliabilities on
the overall reliability of the reference powerplant design.

Becauseof concern for overall powerplant reliability, especially for
human-rated space missions, this study was undertaken to characterize power-
plant configurations that could improve overall reliability, particularly for
low estimates of emerging-technology reliability. The conflict between qual-
ity, as represented by reliability, and the outlay of resources, as repre-
sented by mass, is particularly prominent in space systems and has been the
subject of numerousstudies. This conflict cannot be circumvented, but it can
be minimized through selective design. The mathematical techniques available
to optimize redundancy and increase system reliability are well known. These
techniques rely on varying disciplines ranging from reliability to optimiza-
tion procedures. (For example, see ref. 3.) Since improvements in overall
reliability through redundancy always comeat the expense of additional mass,
it is especially important to identify and characterize a wide variety of
alternative low-mass powerplant configurations based on varying redundancy at
different system hierarchy levels.

An important aspect of this study was the development of massmodels
incorporating all the design features of the original lunar-base powerplant
concept. These models were used to estimate powerplant mass for all alter-
native powerplant conceptual designs considered, and the combined powerplant
reliability and massresults defined a matrix from which attractive configu-
ration options could be selected and evaluated. In addition, a simple
reliability-improvement criterion was developed to focus on appropriate
powerplant design selections at any level of desired powerplant reliability
over the range of expected reactor and power-generation unit reliabilities.
Thus, a method was formulated to select specific space power design configu-
rations that provide high overall reliability in combination with low mass as
a function of the unit reliabilities of the emerging technologies used.

DESIGNRELIABILITY IMPROVEMENT

The reliability of any system can generally be improved by using more
reliable componentsand/or applying distributed redundancy at one or more
levels of the system. For the conceptual designs under consideration, all
subsystem units were assumedto have given, fixed levels of reliability.
Distributed redundancy options were explored as the sole meansto improve
overall reliability. Redundancycan generally be categorized according to two
criteria: the level(s) at which redundancy is applied, and the state of the
redundant elements while the system is in operation. These criteria, and
their application to alternative lunar-base design configurations, formed the
basis for reliability improvement techniques evaluated in this study. In
addition, all redundant elements were assumedto be independent, and their
operation was described as either a "success" or a "failure" over a specified
time interval.

The reference powerplant (ref. i) design was analyzed to understand the
reliability improvements that could be realized by applying redundancy at
different levels of the system hierarchy. The reference powerplant had
redundancy solely at the subsystemunit level, and then only partially (in the

power-generation subsystem). Figure 2 depicts the reactor and power-

generation subsystem of the reference powerplant and shows the key components



of each subsystem. For simplicity, only one of the eight identical power-
generation units is shown. The reference powerplant design configuration is
described in detail next as a basis to characterize alternative design
configurations.

The reference reactor subsystemconsisted of (i) a single 2.5-MWt SP-100
reactor which included a fueled core, vessel structure, control rods and
reflectors, instrumentation, controls, an instrument-rated conical radiation
shadowshield, and a cylindrical neutron shield/bulkhead and (2) a primary
heat-transport loop which included a pump, an accumulator, and inlet and out-
let piping and manifolds. These components, with the exception of the mani-
folds, were located in a manmadesurface excavation lined with the cylindrical
bulkhead. The bulkhead was madeof boron/aluminum which provided excavation
support and shielding to limit soil activation and radiation from scattered
thermal neutrons. The lunar soil beyond the bulkhead provided ample shielding
protection for radiation-sensitive componentsand humanactivities on the
adjacent lunar surface.

The power-generation subsystem was located entirely on the lunar surface
and consisted of eight identical and independent units with two spares. Each
unit was composedof

(i) A platform to support the manifold and engines
(2) A secondary heat-transport loop including a heat exchanger built

into the Stifling engine heater head, a pump, and an accumulator
(3) A 133-kWe-rated free-piston Stirling cycle engine with a linear

alternator
(4) A waste-heat transport loop including a heat exchanger built into

the Stifling engine's cold end, a pump, an accumulator, and a heat-
pipe radiator

(5) Powermanagementand distribution components including an ac-to-dc
convertor, a parasitic load resistor radiator, and an electrical
transmission cable

As previously noted, this powerplant only provided a reliability of
0.7172 when low estimates of reactor and power-generation unit reliabilities
of 0.9 and 0.8, respectively, were assumed. Reliability was improved herein
by applying a variety of redundancy options to the basic design concept. The
following hierarchical definitions were used to clarify the redundancy options
at various levels.

Powerplant The powerplant consisted of either one, two, or three power
systems connected in either series or parallel to provide various forms
of system level redundancy. A powerplant output power level of 800 kWe
indicated "successful" operation.

System Each power system was composedof two series-connected subsystems:
a reactor subsystem and a power-generation subsystem. Power system output
was fixed at either 400 or 800 kWeto accommodatethe various forms of
system-level redundancy used to meet the 800-kWepowerplant requirement.

Subsystem The reactor and power-generation subsystemswere both composedof
one or more units. All units within a given subsystemwere identical and
of equal reliability, and the reliability, or success probability, of any



unit was assumedto be independent of both the number and the operational

state of the other like units.

Reactor Subsystem The reactor subsystem was composed of either one or two

parallel reactor units. Maximum unit output was limited to 2.5 MWt, and

operation down to 25 percent partial-output was assumed to be acceptable.

Power-Generation Subsystem The power-generation subsystem consisted of

multiple parallel units to provide various levels of k-out-of-n, or

partial, redundancy. Each of the n units was sized such that the

required operating power level was achieved from k units. Maximum unit

power output was limited to 400 kWe and no limit was set on minimum unit

power output.

On the basis of these definitions, an option matrix of powerplant redun-

dancy levels was established. The matrix contained 80 different design con-

figurations that employed redundancy options at the system and subsystem unit

level - 4 system-level options, 2 reactor subsystem options, and i0 power-

generation subsystem options.

The four 800-kWe powerplant system level configuration options were

(i) A single, nonredundant, 800-kWe power system operating at full power

(2) Two parallel, redundant, 800-kWe power systems, each assumed to be

operating at half power

(3) Three 400-kWe power systems, each assumed to be operating at two-

thirds power in a partially redundant (two-out-of-three) mode

(4) Two nonredundant, 400-kWe, series-connected power systems

These system-level redundancy options are illustrated in figure 3. System-

level redundancy options were not considered for power systems with smaller

outputs because of the significant anticipated powerplant mass increases.

At the subsystem level, the two reactor subsystem options included a

nonredundant, single 2.5-MWt unit operating at either full or 50-percent

power, and two fully redundant 2.5-MWt units, each operating at either 50- or

25-percent power. Power-generation subsystem options were based on partial-

to-full redundancy (k-out-of-n) configurations and ranged from two-to-ten

power-generation units including either zero, one, or two spare units. Total

subsystem power output varied with specified system power level (i.e., 400 or

800 kWe), and unit power levels also depended on the number of operating and

spare units used. For example, the smallest power-generation unit size of

58 kWe was used in a 400-kWe subsystem (seven-out-of-eight) configuration.

The largest power-generation unit size of 400 kWe (based on current design

limits for Stirling engines) was used with either a 400-kWe subsystem (one-

out-of-two) fully redundant configuration, or an 800-kWe subsystem (two-out-

of-three) configuration. Figure 4 shows a power-system-level reliability path

diagram of a fully redundant two-unit reactor subsystem serially connected to

a generic, k-out-of-n, partially redundant power-generation subsystem.

The second redundancy criterion to be defined is the operational state of

the redundant elements while the powerplant is in operation. There are three

possible operational redundancy states: active, standby, or combined

active-standby. The active redundancy operational state was previously

assumed for the reference powerplant design, and it is also assumed for all



other designs considered in this study. In this state all redundant subsystem
units are always "on" and operational at some fraction of rated capacity.

Active redundancy is quite common in complex remote systems, such as space

applications, where components are subjected to a hazardous environment. It

eliminates the need for potentially unreliable decision, startup, and switch-

ing devices that would be required for parallel elements in a state of standby

redundancy. It also eliminates the need for a controlled startup of a "cold"

unit to full capacity in the event of a failure.

Active redundancy is also justified by the present design philosophy for

most complex systems. Since redundancy is usually costly, many systems are

designed, when possible, to begin a mission by using all available system

capability. As failures occur, the performance of the system is degraded, but

vital functions can still be performed. System "failure" occurs when the per-

formance of the system falls below acceptable, or minimum, levels. This phil-

osophy is particularly applicable to a human-rated application where active

redundancy provides available system capability, and partial-power output from

a degraded system can provide power for vital life-support functions.

For this study, however, a partial-power output requirement was not con-

sidered, and system "failure" was assumed to occur when powerplant power out-

put fell below the rated capacity value of 800 kWe. In addition, there are

some unaddressed operational questions associated with active redundancy that

apply to partial-power operation. For example, in the purely active redun-

dancy mode assumed in this study, all parallel units operating at partial-

power are not only subject to the operational environment, they may also be

operating far from their design points. Although it is generally expected

that partial-power operation would lead to lower unit failure rates for the

reactor, this may not be the case for power-generation units. Because of the

limited knowledge base of the emerging technologies used in this study, these

operational questions cannot be addressed until after further analytical and

experimental evaluation.

It should also be noted that combined active-standby redundancy was not

extensively evaluated herein. However, in certain situations this type of

redundancy may increase overall reliability for systems and subsystems oper-

ating in k-out-of-n configurations. For example, reliability tradeoff studies

based on varying the relationships between operating failure rate, standby

failure rate, and the reliability of switching and startup can be more reli-

able for some combined active-standby configurations (ref. 4). However, these

analyses require additional estimates of partial-power, standby, switching,

and startup reliabilities for the various units. Given the extremely limited

reliability data base associated with the emerging technologies considered for

space nuclear power systems, evaluation of the combined active-standby redun-

dancy mode was deemed to be beyond the scope of this study and was not pursued

further. For the interested reader, the reliability characteristics and cal-

culation techniques applicable to active-standby redundancy are discussed com-

prehensively in reference 4.

RELIABILITY ANALYSIS

The objective of the reliability analysis was to determine the overall

powerplant reliability of the various system and subsystem configurations

investigated. Powerplant reliability was conservatively defined as the



probability of providing a specified power output (800 kWe) for a fixed
mission duration; no partial-power output states were specified.

The analysis dealt with active redundancy only, and it was assumedthat
the reliability of any active element was independent of the state of the
other elements and that all elements within a given subsystemwere identical.
Since the concern is with end-of-mission success, and it was presumed that a
required mission time was specified (although not explicitly stated), the unit
success probability could be treated as an assigned constant. That is, time
dependencywould likely play a part in the determination of a unit's success
probability, but for this analysis the reliability of a given unit was just a
specified constant.

Generalized equations for active and fully redundant parallel design con-
figurations are well documentedin standard reliability texts (e.g., ref. 5).
However, the specific reliability summationexpansion equations used for the
partially redundant (k-out-of-n) power-generation configurations investigated
are not commonlydocumentedand are included in appendix A along with a com-
plete tabulation of all powerplant, system, and subsystem reliability equa-
tions and analysis results.

The reliability analysis included twenty-six 400-kWesubsystem configu-

rations and twenty-four 800-kWe subsystem configurations. These fifty con-

figurations provided the reliability data base and system level building

blocks for the four powerplant configuration options. In addition, a set of

high and low estimates of subsystem unit reliabilities was analyzed for each

subsystem configuration to evaluate overall powerplant reliability sensitivity

to emerging technology reliability.

MASS ANALYSIS

Mass estimates were developed for the 50 subsystem design configurations.

These estimates were based on a "from-the-ground-up" mass estimation for all

components and are consistent with the mass estimates developed for the

reference powerplant (ref. i). A tabulation of subsystem mass values is

included in appendix A in conjunction with the reliability analysis results.

Detailed mass breakdowns for reactor and power-generation subsystems and units

are presented in appendix B. Reactor subsystem unit mass estimates were based

on the use of a modified 2.5-MWt SP-100 reactor for both single- and dual-

reactor subsystem design options. A description of specific reactor unit mod-

ifications required for integration with Stirling engines and operation in a

lunar surface excavation is given in reference i. Also, additional design

modifications to specific reactor subsystem elements were made to reflect the

mass savings due to partial-power operation. This was reflected in reduced

masses for radiation shields, bulkhead/shields, heat-transport loops, and man-

ifolds. Mass estimates for dual-reactor subsystem design concepts were based

on individual excavations for each reactor subsystem and included 100-percent

component redundancy (i.e., linear scaling of component mass) with the excep-

tion of the inlet and outlet manifolds. A larger shared inlet and outlet man-

ifold was assumed for dual installations with a 33-percent mass increase above

the single-reactor manifold estimate.

Power-generation subsystem mass estimates were based on linear scaling of

component masses based on variations in number of units and electrical output



per unit with the exception of the waste heat radiator and the power man-
agementand distribution elements, which were based on fixed specific mass
values of 7.8 kg/m_ and 2.1 kg/kWe, respectively. Stifling engine/linear
alternator unit massestimates were taken from a recent scaling study (ref. 6)
that provided engine/alternator specific mass as a function of electrical
power. All single-cylinder Stirling engine/alternator unit masseswere con-
servatively based on a larger ll3-percent rated power output engine to account
for uncertainty, and actual engine operating power levels were conservatively

assumed to be about 90 percent of the electrical output of the larger engine.

For example, if four engines were required to supply 800 kWe, each engine must

provide 200 kWe. However, the mass estimate for each engine was based on a

225-kWe engine operating at 200 kWe. In addition, a maximum rated output of

450 kWe (400 kWe actual) was assumed because of increased uncertainty in

engine design at larger sizes.

DISCUSSION OF RESULTS

On the basis of analyses carried out in this study, specific conclusions

were reached regarding selection of preferable powerplant, power system, and

subsystem configurations of lunar surface powerplants required to meet an

assigned 800-kWe electrical load at high reliability and low mass. The major

conclusion derived from this effort was that a powerplant consisting of a

single (nonredundant) power system composed of two reactor subsystem units and

at least four power-generation subsystem units, including two spares, will

provide low powerplant mass over a wide range of acceptable reliability cri-

teria and subsystem unit reliability estimates.

Of the four powerplant system design configurations investigated, the

single 800-kWe system configuration was the most attractive from a reliability

and mass perspective. This is clearly shown in figures 5 and 6, which graphi-

cally display the study results in terms of reliability versus mass for all

powerplant configurations. The four system configurations are denoted by dif-

ferent symbols, and the subsystem design configurations are defined by three

numbers. The first number denotes the number of reactor units, the second

denotes the total number of power-generation units, and the third number

denotes the number of spare power-generation units. The connecting lines

between the subsystem configuration design points are shown for clarity only;

they indicate a design commonality of similar type redundancy for both reactor

units and spare power-generation units. Actual connecting lines between sim-

ilar configuration types are truly represented by horizontal lines of constant

reliability. This type of graphic depiction will be shown in a discussion of

mass-reliability envelopes.

Figure 5 displays results for estimated optimistic reactor and power-

generation unit reliability estimates of 0.98 and 0.95, respectively, with a

minimum acceptable powerpiant reliibiiity criterion cutoff value of 0.95,

equivalent to the lower power-generation unit reliability estimate. Figure 6

displays results for pessimistic unit reliability estimates of 0.90 and 0.80

with a minimum acceptable powerplant reliability criterion cutoff value of

0.80, again, equivalent to the lower power-generation unit reliability

estimate.

It is important to note that arbitrary selection of the lowest mass

acceptable reliability system configuration at either one of the (high or low)

i0



subsystem reliability estimates will not guarantee minimum mass at an accept-

able reliability for the other subsystem reliability estimate. For example,

if an arbitrary acceptable overall powerplant reliability criterion is estab-

lished as approximately equal to or greater than the highest subsystem unit

reliability estimate, then the lowest mass powerplant configuration for the

optimistic subsystem unit reliability estimates of 0.98 and 0.95 is a single

nonredundant powerplant with either a (292) or a (241) subsystem configura-

tion. As shown in figure 5 the (292) configuration has a total powerplant

mass of 25 060 kg and provides an overall reliability of 0.9898, and the (241)

configuration has powerplant mass and reliability values of 25 260 kg and

0.9856. However, when pessimistic reactor and power-generation unit relia-

bility estimates of 0.90 and 0.80 are selected, the powerplant reliability

drops to an unacceptable value of 0.7303 for the (292) configuration (not

shown in fig. 6 because it is less than the overall reliability cutoff value)

and 0.8110 for the (241) configuration.

Therefore, minimum-mass powerplant configurations should be selected for

pessimistic estimates of emerging technology unit reliability in order to

ensure acceptable values of overall powerplant reliability. On this basis,

the lowest mass powerplant that can provide an overall reliability of approxi-

mately 0.90 (equivalent to the highest unit reliability estimate) is a single

system with a (262) configuration. This configuration provides a powerplant

reliability of 0.8921 for pessimistic subsystem reliability estimates. If

additional mass is acceptable and higher reliability is desired, the (252)

subsystem configuration increases powerplant reliability to 0.9327. This con-

figuration exhibits a total mass of 28 320 kg, which is only 6 percent higher

than the (262) configuration. If maximum powerplant reliability is desired

and mass is not overly constrained, the (242) configuration provides signif-

icant reliability improvement to 0.9631 at a powerplant mass of 32 340 kg.

The study conclusions and results discussed to this point have been based

on an acceptable powerplant reliability criterion keyed to the highest

subsystem unit reliability estimate - either 0.98 or 0.90. It is of interest,

however, to illustrate the effect of varying the acceptable reliability

criterion on the selection of minimum mass configurations for powerplant con-

figurations based on single 800-kWe power systems. This is qualitatively

illustrated in table I, which ranks the system configurations according to

mass as a function of acceptable system reliability criterion for the high and

low subsystem reliability estimates. These results illustrate the wide vari-

ation in minimum mass system design configurations that occur for different

assumptions of acceptable reliability criteria. In general, as the acceptable

reliability criterion is relaxed, the number of acceptable system configura-

tions increases and the mass ranking changes. When the acceptable reliability

criterion drops below the lowest unit reliability estimates, single-reactor-

unit configurations emerge as acceptable single-system powerplants. For

example, for optimistic unit reliability estimates, the (151) configuration

with an overall powerplant reliability of 0.9578 yields the lowest mass for a

0.95 reliability criterion. For pessimistic unit reliability estimates, the

(162) configuration with an overall powerplant reliability of 0.8110 yields

the lowest mass for a 0.80 reliability criterion.

To facilitate the process of defining a reasonable compromise of mass and

reliability, English developed an approach based on the delineation of a

reliability versus minimum mass envelope (R.E. English, 1990, NASA Lewis

Research Center, Cleveland, OH, personal communication). This graphical
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technique is illustrated in figure 7, which depicts the minimummass power-
plant configurations as a function of desired overall powerplant reliability
for both pessimistic and optimistic subsystem unit reliabilities. The figure
displays the actual reliability step function change associated with each
p0werplant configuration and provides a more realistic description of the
results for use as a design tool.

CONCLUDINGREMARKS

As a result of this study someinteresting perspectives on the charac-
teristics and selection criteria of high-reliability and low-mass lunar-base
powerplant design configurations have emerged. For example, as expected, the

wide range of emerging-technology reliability estimates used had a significant

effect on the selection of high-reliability and low-mass design configura-

tions. Powerplant designs that provided high reliability with low mass when

optimistic emerging technology reliability estimates were assumed were gener-

ally unacceptable when pessimistic reliability estimates were substituted.

Therefore, to ensure acceptable values of reliability, one should select min-

imum mass configurations on the basis of pessimistic reliability estimates.

Another interesting result of the study was that for either low or high

reliability estimates, the best combination of high powerplant reliability and

low mass occurred when redundancy was applied at the lowest level of system

hierarchy. Thus, the most attractive powerplant design concepts were non-

redundant, single-system powerplants with subsystem-unit redundancy options.

Selectien of the best redundancy option for the subsystems, however, depended

on the definition of an acceptable overall powerplant reliability criterion.

The issue of defining an acceptable overall powerplant reliability cri-

terion was addressed, and the definition of this criterion significantly

affected the selection of the best redundancy configuration for the subsystem

units. Since the calculated overall reliability of any powerplant configura-

tion is highly dependent on the emerging technology reliability estimates,

powerplant reliability is a relative value. Therefore, an acceptable relia-

bility criterion must be defined on the basis of emerging technology reli-

ability estimates. The reasonable choice appeared to be an acceptable

reliability criterion that required the overall powerplant reliability to be

equal to, or better than, any emerging technology subsystem unit reliability

estimate. However, that selection required every acceptable powerplant con-

figuration to have two fully redundant, parallel reactor units. Although

dual-unit reactors do not impose a significant mass penalty, they may have

integration and operational problems that were not fully explored in this

study. Therefore, selecting an attractive powerplant design on the basis of

an arbitrary reliability criterion may involve tradeoffs with design or oper-

ational complexity as well as with mass.

Additional perspectives into selecting the best redundancy options for

the subsystem units were gained by analyzing the effect of varying the overall

powerplant reliability criterion with estimates of emerging technology relia-

bilities. For example, with pessimistic emerging technology reliability

estimates and a corresponding reliability criterion of approximately 0.90 or

better, the lowest mass powerplant configuration consisted of a single system

composed of two fully redundant, parallel reactor units coupled to six par-

allel, partially redundant power-generation subsystem units including two
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spares. This configuration provided a powerplant reliability of 0.8921 at a

mass of 26 660 kg. If higher overall powerplant reliabilities are desired,

and additional mass is acceptable, fewer power-generation units are needed.

For example, a decrease to five power-generation units, including two spares,

provides a powerplant reliability of 0.9327 at a mass of 28 320 kg, and a

further decrease to four power-generation units, including two spares, pro-

vides the highest single-system powerplant reliability of 0.9631 at a mass of

32 340 kg.

For optimistic emerging technology reliability estimates and a corre-

sponding reliability criterion of 0.98 or better, the lowest mass powerplant,

again, consisted of a single-system configuration. However, this configura-

tion was composed of two fully redundant reactor units coupled to nine par-

tially redundant power-generation units with two spares. This configuration

provided a powerplant reliability of 0.9898 at a mass of 25 060 kg. Decreas-

ing the number of power-generation units, again, provides higher powerplant

reliability at the expense of mass, up to a maximum of 0.9991 at a mass of

32 340 kg for a four-unit power-generation subsystem with two spares.

Reducing the acceptable reliability criterion to, say, the reliability of

the lowest emerging technology subsystem unit allows single-unit reactor

subsystem configurations to be selected, with a resultant powerplant mass

decrease. For example, with pessimistic emerging-technology reliability

estimates and a corresponding reliability criterion of approximately 0.80 or

better, the lowest mass configuration was a single-system powerplant composed

of only one reactor unit coupled to six parallel, partially-redundant power-

generation subsystem units including two spares. This configuration provided

a powerplant reliability of 0.8110 at a mass of 23 360 kg. If higher power-

plant reliabilities are desired, a wide range of single-unit reactor subsystem

options are viable up to a reliability criterion of about 0.84.

For optimistic emerging technology reliability estimates and a corre-

sponding reliability criterion of 0.95 or better, the lowest mass conceptual

design was a single-system powerplant composed of one reactor unit coupled to

five partially redundant power-generation units, including one spare. This

configuration provided a powerplant reliability of 0.9578 at a mass of

21 390 kg. If higher powerplant reliabilities are desired, a wide range of

single-unit reactor subsystem options are viable up to a reliability criterion

of about 0.98.

Another useful product of this study was the delineation of the minimum

mass envelope in a plot of reliability versus powerplant mass. This approach

provides easy visualization of the best mass and reliability designs and

should be useful for future powerplant design studies.

Partial-power powerplant operation is an important area of consideration

that has only been lightly touched on in this study. A mission-planning

strategy that requires highly reliable "survival" level power will be essen-

tial for any manned planet-surface expedition. Any of the powerplant config-

urations studied herein for an 800-kWe mission success power level will

provide significantly higher reliabilities at a lower survival power level.

For example, using pessimistic reactor and power-generation unit reliability

estimates, a single-system (162) configuration which provides an overall

powerplant reliability of 0.8110 at a mass of 23 360 kg for 800 kWe, will

provide a reliability of 0.8999 at an assumed survival partial-power level of
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400 kWe. The use of dual-reactor configurations can provide even more dra-
matic increases in survival power reliability. A single-system (262) con-
figuration at 26 660 kg, which provided an overall powerplant reliability of
0.8921 at 800 kWe, will achieve a reliability of 0.9899 at 400 kWe. These
results illustrate that reducing survival power level increases reliability in
a very comforting way; an important factor for mannedmissions in a hostile
environment. However, optimal powerplant configuration selection may change

if mission "success" is redefined to emphasize a "survival" power level.

The methodology developed in this study provided valuable insight into

the considerations required to identify and characterize high-reliability and

low-mass lunar-base powerplant designs. In general, this methodology can pro-

vide similar reliability perspectives for any space power conceptual designs

based on emerging technologies with unknown reliabilities.
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APPENDIXA - RELIABILITYANALYSIS

This appendix defines the symbols and provides the equations used in the
reliability analysis.

k
n

P

RG

RP

RR

RS

r

S

Symbols

number of successes

total number of parallel power-generation units

power-generation subsystem unit reliability

power-generation subsystem reliability

powerplant reliability

reactor subsystem reliability

system reliability

reactor subsystem unit reliability

number of spare power-generation units

Powerplant Reliability Equations

The following equations were used to calculate overall powerplant

reliability for the various levels of redundancy represented by the four

powerplant types:

Powerplant type Powerplant

reliability

Single system (nonredundant)

Two parallel fully redundant systems

Two series systems (nonredundant)

Three partially redundant (two-out-of-three) systems

RP = RS

RP = RS(2 - RS)
2

RP = (RS)

RP = 3RS 2 - 2RS 3

System Reliability Equations

The following equations were used to calculate system reliability RS

for the various levels of redundancy employed in the subsystem configurations:

RS = (RR)(RG)

where RR = r, for a single-reactor subsystem unit, or

RR = r(2 - r), for two parallel, fully redundant reactor subsystem units, and

n

RG E n != pk(l - p)

k=(n-s] (n - k) !kl

n-k

for n partially redundant, parallel power-generation subsystem units

including s spare units.
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The general summationexpansion for RG reduces to simplified poly-
nomials for the two-spares (s = 2) case.

The following table presents the polynomial expressions derived from the
summationexpansion for RGfor power-generation subsystems employing from
three-to-nine units (3 < n < 9) with two spares (s = 2):

Total numberof
parallel power-

generation units,
n

3

4

5

6

7

8

9

Power-generation

subsystem

reliability,

RG

3p - 3p2 + p3

6p 2 - 8p 3 + 3p 4

10p 3 - 15p 4 + 6p 5

15p 4 - 24p 5 + 10p 6

21p 5 35p 6 + 15p 7

28p 6 - 48p 7 + 21p 8

36p 7 - 63p 8 + 28p 9

For n partially-redundant power-generation subsystems using only one spare

unit (s = i), the summation expansion reduces to

n-I n

RG -- np - (n - l)p

System Reliability and Mass Tabulation

Table II presents the matrix of reliability and mass results for single,

nonredundant system configurations at two power levels, 400 and 800 kWe, and

two levels of subsystem unit reliability.
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APPENDIXB - MASSANALYSIS

This appendix provides the detailed massbreakdown data used to generate
total powerplant mass for 400- and 800-kWesystem power outputs. It includes
separate tabulations of reactor subsystem mass, power-generation subsystem
mass, and total system mass.

Reactor SubsystemMass

Table III presents the componentbreakdownof reactor subsystem massele-
ments for 400- and 800-kWesystems using one or two reactor subsystem units.

Reactor mass values were conservatively based on a fixed thermal output of

2.5 MWt for all cases. Dual-reactor configurations are assumed to operate in

parallel at 50 percent of required power and to share a single set of inlet

and outlet manifolds with a 33-percent manifold mass penalty for additional

primary-loop piping connections.

Power-Generation Subsystem Mass

For the power-generation subsystem mass, separate estimates were made for

the Stirling engine/alternator units and the balance of the subsystem, which

included four items: heat transport loop, surface platform, radiator, and

power management and distribution (PMAD). Total subsystem mass varied

directly with the total number of power-generation units used to generate

system power levels of 400 and 800 kWe. The number of power-generation units

required to meet each system power level varied with the rated power output of

each unit and the number of spares. Stifling engine/alternator unit mass

estimates were based on the specific mass and power level relationships

obtained from reference 6.

Table IV presents the Stifling engine/alternator mass estimates as a

function of the number of required units. Mass values are shown only for the

number of required parallel units that can provide power outputs over the 400-

to 800-kWe range. Table V presents the balance-of-subsystem mass breakdown

for an 800-kWe subsystem output as a function of the number of required units.

Table VI presents the balance-of-subsystem mass breakdown for a 400-kWe sub-

system power output as a function of the number of required units. Tables VII

and VIII present the system mass breakdown for 400- and 800-kWe system power

outputs. Mass values are given for reactor and power-generation subsystems as

a function of the total number, number of spares, and the power level (kWe) of

power-generation units required to produce 400- and 800-kWe system power

outputs.
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TABLE I. - EFFECT OF ACCEPTABLE SYSTEM RELIABILITY CRITERION ON

SUBSYSTEM CONFIGURATION SELECTION

Acceptable

system

reliability

criterion

0.98

.95

.90

.85

.8O

Subsystem configurations of minimum-mass powerplants a

Reactor unit reliability,

0.98; power-generation

unit reliability, 0.95

(292),(282),(241),(272),

(262),(231),(252),(242)

(151),(192),(182),(141),

(172),(162),(271),(261),

(131),(251),(152),(292)

Reactor unit reliability, 0.90;

power-generation unit

reliability, 0.80

None meet reliability criterion

(242)

(b)

(b)

(b)

(262),(252),(242)

(262),(231),(252),(142),(242)

(162),(131),(152),(241),(272)

aNumbers define the subsystem configuration. The first number is the num-

ber of parallel reactor units, the second number is the total number of

power-generation units, and the third number is the number of spare

power-generation units.

ball single- and dual-reactor configurations.
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TABLEII. - MATRIXOF RELIABILITY AND MASS RESULTS

(a) System power level 400 kWe

System

configura-

tion a

Power

output of

power-

generation

unit,

kWe

System

mass,

kg

Low-end

system

relia-

bility, b

RS

High-end

system

relia-

bility, c

RS

ii0

121

131

132

141

142

151

152

161

162

171

172

182

210

221

231

232

241

242

251

252

261

262

271

272

282

400

400

200

400

133

200

i00

133

8O

i00

67

8O

67

400

400

200

400

133

200

I00

133

8O

i00

67

8O

67

ii 490

15 820

12 930

20 150

12 180

14 850

ii 960

13 440

ii 780

12 920

ii 850

12 550

12 520

14 490

18 770

15 880

23 I00

15 130

17 800

14 910

16 390

14 730

15 870

14 800

15 500

15 470

0.7200

.8640

.8064

.8928

.7373

.8755

.6635

.8479

.5898

.8110

.5190

.7668

.7172

.7920

.9504

.8870

.9821

.8110

.9631

.7299

.9327

.6488

.8921

.5709

.8435

.7966

0.9310

.9775

.9729

.9799

.9663

.9795

.9578

.9789

.9479

.9778

.9365

.9763

.9743

.9496

.9971

.9924

.9995

.9856

.9991

.9769

.9985

.9668

.9974

.9553

.9958

.9938

aNumbers define the subsystem configuration. The

first number is the number of parallel reactor

units, the second number is the total number of

power-generation units, and the third number is the

number of spare power-generation units.

bFor low estimates of reactor and power-generation

unit reliability: r = 0.90; p = 0.80.

CFor high estimates of reactor and power-generation

unit reliability: r = 0.98; p = 0.95.
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TABLEII. - Concluded.

System
configura-

tion a

131
141
142
151
152

161
162
171
172
181

182
191
192
231
241

242
251
252
261
262

271
272
282
292

b) System power level 800 kWe

Power
output of

power-
generation

unit,
kWe

400
270
400
200
270

160
200
133
160
114

133
i00
114
4OO
270

4OO
200
270
160
200

133
160
133
114

System
mass,

kg

24 660
22 320
29 040
21 390
25 020

20 850
23 360
20 660
22 400
20 720

21 960
20 610
21 760
27 960
25 620

32 340
24 690
28 320
24 150
26 660

23 960
25 700
25 260
25 060

Low-end
system
relia-

bility, b

RS

0.8064

.7373

.8755

.6635

.8479

.5898

.8110

.5190

.7668

.4531

.7172

.3926

.6639

.8870

.8110

.9631

.7299

.9327

.6488

.8921

.5709

.8435

.7966

.7303

High-end

system

relia-

bility, c

RS

0.9729

.9663

.9795

.9578

.9789

.9479

.9778

.9365

.9763

.9238

.9743

.9104

.9718

.9924

.9856

.9991

.9769

.9985

.9668

.9974

.9553

.9958

.9930

.9898

aNumbers define the subsystem configuration. The

first number is the number of parallel reactor

units, the second number is the total number of

power-generation units, and the third number is the

number of spare power-generation units.

bFor low estimates of reactor and power-generation

unit reliability: r = 0.90; p = 0.80.

=For high estimates of reactor and power-generation

unit reliability: r = 0.98; p = 0.95.
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TABLEIII. - REACTORSUBSYSTEMMASSBREAKDOWN

Element

Reactor
Instrumentation and control
Radiation shield
Bulkhead/shield
Heat transport loop
Manifolds

Total

System power output, kWe

800 400

Numberof reactors

1 2 1

760 1520 760
360 720 360
940 1880 740
770 1540 670
350 700 300
420 550 370

3600 6900 3200

1520
720

1480
1340
600
490

6150

TABLEIV. - STIRLINGENGINE/ALTERNATORUNIT MASS

Rated
power
per

unit,
kWe

65
75
90

113
130
150
180
225
300
450

Output
power
per

unit,
kWe

58

Specific
massat
rated
power,
kg/kWe

6.3

Unit
mass,

kg

410
67 6
80 6

i00 6
114 6
133 7
160 7
200 7
267
400

.4 480

.4 580

.8 770

.9 897

.i 1065

.3 1314

.7 1733
8.2 2460
9.2 4140

Rated
power
per

unit,
kWe 1

65
75
90

113
130
150
180
225
3O0
450 4140

3466
4920
8280

Mass, kg

Numberof units

3 4 5 6

3 195
3 942
5 199
7 380

12 420

3 080
3 588
4 260
5 256
6 932
9 840

16 560

2 900
3 850
4 485
5 325
6 570
8 665

12 300

2 880
3 480
4 620
5 382
6 390
7 884

i0 298

7

2870
3360
4060
5390
6279
7455
9198

8

3280
3840
4240
6160
7176
8520

9

3690
4320
5220
6930
8073

i0

4100
4800
5800
7700
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TABLEV. - BALANCEOF POWER-GENERATIONSUBSYSTEMMASSFOR800-kWeOUTPUT

Element Mass, kg

Total numberof power-generation units

Heat transport
Surface platform
Radiator
PMAD

Total, kg

1 2 3 4 5 6 7

Ii0 220 330 440 550 660 770
130 260 390 520 650 780 910

6240 6240 6240 6240 6240 6240 6240
1680 1680 1680 1680 1680 1680 1680

8160 8400 8640 8880 9120 9360 9600

8 9

880 990
1040 1 170
6240 6 240
1680 1 680

9840 i0 080

TABLEVI. - BALANCEOF POWER-GENERATIONSUBSYSTEMMASSFOR400-kWeOUTPUT

Element Mass, kg

Heat transport
Surface platform
Radiator
PMAD

Total, kg

Total numberof power-generation units

1 2 3 4 5 6 7 8 9

90 180 270 360 450 540 630 720 810
i00 200 300 400 500 600 700 800 900

3120 3120 3120 3120 3120 3120 3120 3120 3120
840 840 840 840 840 840 840 840 840

4150 4340 4530 4720 4910 5100 5290 5480 5670
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TABLE VII. - MASS BREAKDOWN OF 800-kWe SYSTEMS

(a) One spare power-generation unit

System or subsystem

400

Mass, kg

Total number of power-generation units

Power output per unit, kWe

270 200 160 133 114
l

Power-generation subsystem

Stirling engine/alternator units

Balance of subsystem

Total

System total a

With single reactor unit

With two reactor units

12 420 9 840 8 670 7 890

8 640 8 880 9 120 9 360

21 060 18 720 17 790 17 250

24 660 22 320 21 390 20 850

27 960 25 620 24 690 24 150

7 460 7 280

9 600 9 840

17 060 17 120

20 660 20 720

23 960 24 020

9 I i0

I00 90

6 930 5 800

i0 080 i0 320

17 010 16 120

20 610 19 720

23 910 23 020

(b) Two spare power-generation units

System or subsystem

Power-generation subsystem

Stirling engine/alternator units

Balance of subsystem

Total

System total a

With single reactor unit

With two reactor units

Mass, kg

400

16 560 12 300 I0 400 9 200

8 800 9 120 9 360 9 600

25 440 21 420 19 760 18 800

29 040 25 020 23 360 22 400

32 340 28 320 26 660 25 700

Total number of power-generation units

Power output per unit, kWe

267 200 160 133 114

8 520 8 080

9 840 I0 080

18 360

21 960

25 260

18 160

21 760

25 060

aMass of reactor subsystem is 3600 kg with one reactor unit and 6900 kg with two

reactor units.
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TABLE VIII. - _iASS BREAKDOWN OF 400-kWe SYSTEMS

(a) One spare power-generation unit

System or subsystem Mass, kg

Total number of power-generation units

2 3 4 5 6 7 8

Power output per unit, kWe

400 200 133 i00 80 67 58

Power-generation subsystem

Stirling engine/alternator units 8 280 5 200 4 260 3 850 3 480 3 360 3 280

Balance of subsystem 4 340 4 530 4 720 4 910 5 i00 5 290 5 480

Total 12 620 9 730 8 980 8 760 8 580 8 650 S 760

System total a

With single reactor unit 15 820 12 930 12 180 ii 960 Ii 780 ii 850 iI 960

With two reactor units 18 770 15 880 15 130 14 910 14 730 14 800 14 910

(b) Two spare power-generaton units

System or subsystem Mass, kg

Total number of power-generation units

3 4 5 6 7 8

Power output per unit, kWe

400 200 133 i00 80 133

Power-generation subsystem

Stirling engine/alternator units 12 420 6 930 5 330 4 620 4 060 3 840

Balance of subsystem 4 530 4 720 4 910 5 i00 5 290 5 480

Total 16 950 Ii 650 i0 240 9 720 9 350 9 320

System total a

With single reactor unit 20 150 14 850 13 440 12 920 12 550 12 520

With two reactor units 23 i00 17 800 16 390 15 870 15 500 15 470

amass of reactor subsystem is 3200 kg with one reactor unit and 6150 kg with two

reactor units.
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Figure 1._Subsystem-level configuration for a single
reactor unit and multiple power-generation units.

Pump
®

_ Reactor

, I Accumulator I

-eac,or' I1
_J-I ,_,.,,ro,sH"""°"J

Shield/bulkhead

I _.,,o,_!
tl ,

Reactor subsystem.

"1 [
I I
I I
I I

I I I

I Stiding
enginel
alternator

I_,,_°,_,o,_

I

ac-to-dc
converter

I Heat pipe l

" I radiator q

, I
Accumulator J-.-..-=

I000 V dc

to load
load
resistor

Power-generation subsystem.

Figure 2.--Simplified schematic of lunar-base powerplant.
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sy,,omi G
Single, nonredundant 800-kWe system - no spare

I System

I System _

Two parallel, redundant 800-kWe systems - one spare

I System

I System

I System

Three partially redundant 400-kWe systems - one spare

I System H System _

Two series, nonredundant 400-kWe systems - no spare

Figure 3.--800-kWe lunar-base powerplant system
redundancy options.
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Figure 4.--Subsystem-level configuration for parallel dual
reactor units and multiple power-generation units.
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.9995

.9990

.9980

.9950

t't"

.99OO

.9800

.9700

.96O0

.9500
2O 25 30 35 40 45 50x10 3

Mass, kg

Figure 5.--Reliability and mass of 800-kWe lunar-base powerplant options for a reactor subsystem unit reliability of 0.98 and
a power-generation unit reliability of 0.95. Numbers corresponding to points define the system configuration. The first num-
ber is the number of parallel reactor subsystems, the second number is the total number of power-generation units, and the
third number is the number of spare power-generation units.
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Figure 6--Reliability and mass of 800-kWe lunar-base powerplant options for a reactor subsystem unit reliability of 0.90 and
a power-generation unit reliability of 0.80. Numbers corresponding to points define the system configuration. The first num-
ber is the number of parallel reactor subsystems, the second number is the total number of power-generation units, and the
third number is the number of spare power-generation units.
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Figure 7.--Reliability and mass envelopes for 800-kWe lunar base powerplants. Numbers corresponding to points define the
system configuration. The first number is the number of parallel reactor subsystems, the second number is the total number
of power-generation units, and the third number is the number of spare power-generation units.
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